|
|
|
|
移动端

前言

《深度学习与计算机视觉:算法原理、框架应用与代码实现》本书全面介绍了深度学习及计算机视觉中最基础的知识,并结合最常见的应用场景和大量实例,带领读者进入丰富多彩的计算机视觉领域。本节为前言。

作者:叶韵来源:机械工业出版社|2017-11-16 16:36

年前最后一场技术盛宴 | 1月27日与京东、日志易技术大咖畅聊智能化运维发展趋势!


前言

为什么要写这本书

当本书编辑找到我时,我才意识到,这两年火爆程度堪比一线城市房价的深度学习,在国内竟没有几本专门的中文书籍。目前市场上为数不多的有关深度学习的中文书,有大而全的名家之作,但其中关于深度学习的内容只有很少的一部分;有针对框架的工具书,但其偏重框架本身,缺少基础知识和理论,就好像介绍了一把剑,却没教剑法;有科普型的书,主要作用是提振读者自信,其实读者并不能从中学到任何动手能力。最重要的是,作为深度学习被应用最多,也是最有趣的领域——计算机视觉,却没有专门的书,这是笔者编写这本书的初衷。

我并非计算机科班出身,在转向深度学习的过程中遇到了很多问题,总结了许多经验。从写书的角度来讲,这没准是个优势。希望我在业界实际项目中的经验,加上自学时总结的教训,可以有效地帮助尚未进入深度学习和计算机视觉领域的读者。

本书面向有志于进入深度学习和计算机视觉领域的学生和技术研发人员,通过介绍深度学习及计算机视觉中最基础的知识,并结合最常见的应用场景和大量实例,带领读者进入丰富多彩的计算机视觉领域。作为一本“原理+实践”教程,本书用最基本的公式推导加上大量的配图和实例代码,给读者生动的内容,而不是枯燥的原理堆砌。

本书特色

注重原理和上手实战。力求读者在阅读本书后,不仅能了解常见算法背后的思想,还能具备独立开发常见的基于深度学习的计算机视觉算法的能力。

原理讲解通俗易懂。本书能通过文字定性讲解的就不用计算和公式,能用图表述的就不用文字。公式虽然不可避免,但尽量做到公式是讲解和图示的辅助,而不是需要细致理解的部分。

大量原创代码和图示。本书结合作者在实际工作中的经验,将入门实战的例子和其他示例力求做到实用性和趣味性并存,并将代码分享到本书的github页面上供读者下载。本书的github页面地址为https://frombeijingwithlove.github.io/dlcv_for_beginners/

本书内容

本书共13章,分为2篇。

第1篇  基础知识

第1章从历史讲起,介绍了深度学习和计算机视觉的基础概念和常见应用。

第2章介绍了最基础的数学知识,包括线性代数、概率、高维空间、卷积和数学优化。

第3章以神经网络为重点,讲解了机器学习和数据的基础知识。

第4章在第3章的基础上,介绍了卷积神经网络的概念、原理和一些常见结构。

第2篇  实例精讲

第5章介绍Python基础,并通过小例子介绍了NumPy和matplotlib的基本使用。

第6章介绍了基于Python的OpenCV使用,并动手实现了数据增加小工具和物体框标注小工具。

第7章分别通过MXNet和Caffe实现了最简单的神经网络,以及结果的可视化。

第8章从头开始一步步基于MNIST数据集,分别实现了基于MXNet和Caffe的卷积神经网络模型用于手写数字识别,并介绍了如何测试和评估模型。

第9章实现了一个基于Caffe的用卷积神经网络做回归的例子,并介绍了如何制作HDF5格式数据,如何用GPU批量对数据进行运算,以及如何实现可视化训练的模型。

第10章首先实现了一个图片爬虫用于搜集图片数据,并以美食图片分类为例子一步步讲解如何基于Caffe实现迁移学习。然后在此基础上进一步讲解了如何对数据进行预处理,如何使用混淆矩阵、P-R和ROC曲线,最后介绍了如何实现可视化卷积神经网络对输入图片的响应。

第11章针对R-CNN系和YOLO/SSD系这两类算法,简要介绍了基于深度学习的目标检测算法的发展史,并给出了基于MXNet的SSD检测算法实例,以及分析了结果的可视化。

第12章介绍了度量学习的基本概念,并从图片开始,一步步实现了基于Caffe的Siamese网络,还实现了基于τ-SNE的结果可视化。

第13章讲解了最基本的图像风格迁移算法,并给出了基于MXNet的图像风格迁移例子,读者可以用自己喜欢的图片做出算法生成的艺术作品。

适合阅读本书的读者

本书适合以下读者阅读:

对人工智能、机器学习感兴趣的读者;

对深度学习和计算机视觉感兴趣的读者;

希望用深度学习完成设计的计算机或电子信息专业的学生;

讲授机器学习和深度学习实践课的老师;

希望进一步提升编程水平的开发者;

机器学习与机器视觉研发人员和算法工程师;

人工智能产品经理。

阅读本书的读者最好具备以下要求:

至少具备高中以上的数学基础,本科以上最佳;

具备基本的编程能力;

了解Linux的基本使用;

拥有一台NVIDIA显卡的计算机,最好是2GB以上的显存。

本书虽然定位为入门书,但并不能保证21天或者3个月包会。学习是一件没有捷径可走的事情,希望本书能帮助读者少走弯路,也希望每一位读者翻开书前,都是带着好奇和兴趣。

纠错

由于是第一次写书,且时间仓促,错误之处估计难以避免,敬请读者朋友们发现错误后到本书的github页面指出,我会尽快更新在勘误表里,不胜感激!

本书作者

本书由叶韵主笔编写。其他参与编写的人员有张昆、张友、赵桂芹、晁楠、高彩琴、郭现杰、刘琳、王凯迪、王晓燕、吴金艳、尹继平、张宏霞、张晶晶、陈冠军、魏春、张燕、范陈琼、孟春燕、王晓玲、顼宇峰、肖磊鑫、薛楠、杨丽娜、闫利娜、王韶、李杨坡、刘春华、黄艳娇、刘雁。

致谢

成书过程中,得到了很多人的帮助,在此向他们表示诚挚的谢意。

首先感谢负责本书的编辑,我既不是大V,博客文章也没几篇,是他们的信任让我能通过这次写作梳理知识,并获得稿费。

感谢我的朋友们:NVIDIA(英伟达)的高级工程师华远志,谷歌的软件工程师吕佳楠,清华大学的马晨同学,NVIDIA的高效GPU架构师欧阳晋博士,西门子的高级研究员田疆博士,理光软件研究院的研究员钟诚博士和亚马逊的科学家庄晓天博士。他们几位在成书过程中给予了我很多帮助和建议,特别是田疆博士、钟诚博士和欧阳晋博士,对本书内容给出了全面且独到的建议,并指出了部分错误。

感谢京东从事AI方向的同事们,他们各个都身怀绝技,工作中和他们的交流给了我很多技术上的帮助和灵感。

感谢插画师翟少昂为本书绘制插画,感谢星河互联高级投资经理杨森授权本书使用他于漠河的严冬中拍摄的照片。

感谢我的博士生导师Yu Cao教授和我第一家效力公司的CTO——Bruce McGaughy博士。在应试教育的影响下,我浑浑噩噩求学近20载,未曾找到学习的意义。和他们二位接触的过程中我才渐渐明白,原来学习最重要的是兴趣。也因此,后来我才有勇气放弃了钻研了近10年的老本行,转向自己更感兴趣的算法和机器学习。

最后也是我最想感谢的,是我的家人!写书期间我的家人承担了一切家务劳动,是他们全方位的支持和细致照顾,让我在身体健康的状态下完成了写作。特别是我的妻子,尽管她看不懂我在写什么,却认为写得很棒。是她每天的鼓励和支持才让我没有半途而废,能在此表达我对她的谢意,是我完成这本书的最大动力。

叶韵

于北京市西郊机场老干部活动中心


喜欢的朋友可以添加我们的微信账号:

51CTO读书频道二维码


51CTO读书频道活动讨论群:365934973

【责任编辑:book TEL:(010)68476606】

回书目      下一节
点赞 0
分享:
大家都在看
猜你喜欢

读 书 +更多

JAVA并发编程实践

本书既能够成为读者的理论支持,又可以作为构建可靠的、可伸缩的、可维护的并发程序的技术支持。本书并不仅仅提供并发API的清单及其机制,...

订阅51CTO邮刊

点击这里查看样刊

订阅51CTO邮刊