您所在的位置:读书频道 > 网络与维护 > 网络管理 > 3.1.3 总线型结构

3.1.3 总线型结构

2007-07-13 18:23 王达 电子工业出版社 字号:T | T
一键收藏,随时查看,分享好友!

本章主要将介绍以上各种主要网络拓扑结构,以及网络拓扑结构的绘制、不同规模的企业局域网拓扑结构设计思路和典型的广域网接入方式的拓扑结构设计方法。本节是总线型结构。

AD:

3.1.3  总线型结构
总线型拓扑结构与环型结构差不多,都主要是利用同轴电缆作为传输介质,而且网络通信中都是令牌的方式进行的。但接入速率低于上节介绍的环型网络,所以与环型网络有着同样被淘汰的命运。在目前的局域网中,纯粹的总线网络基本上不见了。
1.总线型结构概述
总线型拓扑结构网络中所有设备通过连接器并行连接到一个传输电缆(通常称之为“中继线”“总线”“母线”或“干线”)上,并在两端加装一个称之为“终接器”的组件,如图3-6所示。
图3-6  总线型结构示例
总线型网络所采用的传输介质一般也是同轴电缆(包括粗缆和细缆),不过现在也有采用光缆作为总线型传输介质的,如ATM网、Cable MODEM所采用的网络等都属于总线型网络结构。为了扩展计算机的台数,而且还可以在网络中添加其他的扩展设备,如中继器等。令牌总线结构的代表技术就是IBM的ARCNet网络。
从传输介质和网络结构上来看,它与上节介绍的环型结构非常类似,都是共享一条传输电缆,在电缆两端都要加装终接器匹配。但有一个重要的不同就是,环型网中的连接(环中继转发器)和这里的连接器与电缆的连接方式,环型网络中的连接器与电缆是串联的,所以任何连接节点出现问题,都会断开整个网络,而总线型结构中的连接器与电缆是并联的,节点故障不会影响网络中的其他节点通信。而且总线型结构中的连接器还可以连接中继设备,连接其他网络,以扩展网络连接和传输距离,如图3-7所示。当然所采用的技术也不同,环型结构采用的是IEEE 802.5令牌环技术,而总线型结构采用的是IEEE 802.4令牌总线技术(但并不是所有环型网络都支持IEEE 802.5标准,也不是所有的总线型网络都支持IEEE 802.4标准)。
图3-7  双总线结构网络互联示例
2.令牌总线工作原理
令牌总线媒体访问控制是将局域网物理总线的站点构成一个逻辑环,每一个站点都在一个有序的序列中被指定一个逻辑位置,序列中最后一个站点的后面又跟着第一个站点。每个站点都知道在它之前的前趋站和在它之后的的后继站垢标识。为了保证逻辑闭合环路的形成,每个节点都动态地维护着一个连接表,该表记录着本节点在环路中的前继、后继和本节点的地址,每个节点根据后继地址确定下一站有令牌的节点,如图3-8所示。
图3-8  令牌总线中的站点连接表
从图中可以看出,在物理结构上,它是一个总线结构局域网,但是在逻辑结构上,又成了一种环型结构的局域网。和令牌环一样,站点只有取得令牌,才能发送帧,而令牌在逻辑环上依次循环传递。
总线上站点的实际顺序与逻辑顺序并无对应关系,这也就是我们在看图3-8所示结构中站点物理位置与逻辑位置不一致的原因(从各站点的连接表中体现)。
在正常运行时,当站点做完该做的工作或者时间终了时,它将令牌传递给逻辑序列中的下一个站点。从逻辑上看,令牌是按地址的递减顺序传送至下一个站点的,但从物理上看,带有目的的令牌帧广播到总线上所有的站点的,当目的站点识别出符号它的地址,即把该令牌帧接收。只有收到令牌帧的站点才能将信息帧送到总线上,不像CSMA/CD访问方式那样,令牌总线不可能产生冲突。由于不可能产生冲突,令牌总线的信息帧长度只需根据要传送的信息长度来确定,就没有最短帧的要求。而对于CSMA/CD访问控制,为了使最远距离的站点也能检测到冲突,需要在实际的信息长度后添加填充位,以满足最短帧长度的要求。
令牌总线控制的另一个特点是站点间有公平的访问权。因为完全采用半双工的操作方式,所以只有获得令牌的节点才能发送信息,其他节点只能接收信息,或者被动地发送信息(在拥有令牌的节点要求下,发送信息)。取得令牌的站点有报文要发送则可发送,随后将令牌传递给下一个站点;如果取得令牌的站点没有报文要发送,则立刻把令牌传递到下一站点。由于站点接收到令牌的过程是顺序依次进行的,因此对所有站点都有公平的访问权。
3.令牌总线的主要优缺点
总线拓扑的优点与环型拓扑结构差不多,主要有如下几点。
(1)网络结构简单,易于布线
因为总线型网络与环型网络一样,都是共享传输介质,也通常无须另外的网络设备,所以整个网络结构比较简单,布线比较容易。
(2)扩展较容易
这是它相对同样是采用同轴电缆(或光纤)作为传输介质的环型网络结构的最大的一个优点。因为总线型结构网络中,各节点与总线的连接是通过连接并行连接(环型网络中连接器与电缆的连接是串行的)的,所以节点的扩展无须断开网络,扩展容易了许多。而且还可通过中继器设备扩展连接到其他网络中,进一步提高了可扩展性能。
(3)维护容易
同样是因为总线型结构网络中的连接器与总线电缆并行连接的,所以这给整个网络的维护带来了极大的便利,因为一个节点的故障不会影响其他节点,更不会影响整个网络,所以故障点的查找就容易了许多。这与星型结构的类似。
尽管有以上一些优点,但是它与环型结构网络一样,缺点仍是主要的,这些缺点也决定了它在当前网络应用中也极少使用的命运。总线型结构的主要缺点表现在以下几个方面。
(1)传输速率低
上节介绍的IEEE 802.5令牌环网中的最高传输速率可达16Mbps,但IEEE 802.4标准下的令牌总线标准最高传输速率仅为10Mbps。所以它虽然在扩展性方面较令牌环网有一些优势,但它同样摆脱不了被淘汰的命运。现在10Mbps的双绞线集线器星型结构都不再应用了,总线型结构的唯一优势就是那同轴电缆比双绞线更长一些的传输距离,而这些优势相对光纤来说,根本不值得一提。在星型结构中同样可以采用光纤作为传输介质,以延长传输距离。
(2)故障诊断困难
虽然总线拓扑结构简单,可靠性高,而且是互不影响的并行连接,但故障的检测仍然很不容易。这是因为这种网络不是集中式控制,故障诊断需要在网络中各节点计算机上分别进行。
(3)故障隔离比较困难
在这种结构中,如果故障发生在各个计算机内部,只需要将计算机从总线上去掉,比较容易实现。但是如果是总线传输介质发生故障,则故障隔离就比较困难了。
(4)网络效率和传输性能不高
因为在这种结构网络中,所有的计算机都在一条总线上,发送信息时比较容易发生冲突,故这种结构的网络实时性不强。网络传输性能也不高。
(5)难以实现大规模扩展
虽然相对环型网络来说,总线型的网络结构在扩展性方面有了一定的改善,可以在不断开网络的情况下添加设备,还可添加中继器之类的设备予以扩展,但仍受到传输性能的限制,其扩展性远不如星型网络,难以实现大规模的扩展。
综上所述,单纯总线型结构网络目前也已基本不用,因为传输性能太低(只有10Mbps),可扩展性也受到性能的的限制。目前使用总线型结构的就是后面将要介绍的混合型网络中才有些用到。在这些混合型网络中使用总线型结构的目的就是用来连接两个(如两栋建筑物),或多个(如多楼层)相距超过100米的局域网,细轴电缆连接的距离可达185米,粗同轴电缆可达500米。如果超过这两个标准,就需要用到光纤了。但无论采用哪种传输介质的总线型结构,传输速率都保持有10Mbps,实用性极低。还不如直接采用光纤星型结构。
【责任编辑:雪花 TEL:(010)68476606-8007】

回书目   上一节   下一节

分享到:

  1. Linux服务器配置全程实录
  2. 揭秘--优秀PPT这样制作

热点职位

更多>>

热点专题

更多>>

读书

Linux服务器安全策略详解
Linux主要用于架设网络服务器。如今关于服务器和网站被黑客攻击的报告几乎每天都可以见到,而且随着网络应用的丰富多样,攻击的

51CTO旗下网站

领先的IT技术网站 51CTO 领先的中文存储媒体 WatchStor 中国首个CIO网站 CIOage 中国首家数字医疗网站 HC3i 51CTO学院